The DIRS1 group of retrotransposons.
نویسندگان
چکیده
Only three retrotransposons of the DIRS1 group have previously been described: DIRS1 from the slime mold Dictyostelium discoideum, PAT from the nematode Panagrellus redivivus, and Prt1 from the zygomycetous fungus Phycomyces blakesleeanus. Analyses of the reverse transcriptase sequences encoded by these elements suggest that they are related to the long terminal repeat (LTR) retroelements, such as the Ty3/gypsy retrotransposons and the vertebrate retroviruses. The DIRS1-group elements, however, have several unusual structural features which distinguish them from typical LTR elements: (1) they lack the capacity to encode DDE-type integrases or aspartic proteases; (2) they have open reading frames (ORFs) of unknown function; (3) they integrate without creating duplications of their target sites; and (4) although they are bordered by terminal repeats, these sequences differ from typical LTRs in that they are either inverted repeats or "split" direct repeats. Because of the small number of DIRS1-like elements described, and the unusual structures of these elements, little is known about their evolution, distribution, and replication mechanisms. Here, we report the identification of several new DIRS1-like retrotransposons, including elements from nematodes, sea urchins, fish, and amphibia. We also present evidence for the existence of DIRS1-like sequences in the human genome. In addition, we show that the lack of DDE-type integrase genes from elements of the DIRS1 group is explained by the finding that the previously uncharacterized ORFs of these elements encode proteins related to the site-specific recombinase of bacteriophage lambda. The presence of lambda-recombinase-like genes in DIRS1 elements also accounts for the lack of target-site duplications for these elements and may be related to the unusual structures of their terminal repeats.
منابع مشابه
kangaroo, a mobile element from Volvox carteri, is a member of a newly recognized third class of retrotransposons.
Retrotransposons play an important role in the evolution of genomic structure and function. Here we report on the characterization of a novel retrotransposon called kangaroo from the multicellular green alga, Volvox carteri. kangaroo elements are highly mobile and their expression is developmentally regulated. They probably integrate via double-stranded, closed-circle DNA intermediates through ...
متن کاملThe Evolution of Tyrosine-Recombinase Elements in Nematoda
Transposable elements can be categorised into DNA and RNA elements based on their mechanism of transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite sharing characteristics with both DNA and RNA elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like ...
متن کاملCryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi.
A new group of transposable elements, which the authors have named cryptons, was detected in several pathogenic fungi, including the basidiomycete Cryptococcus neoformans, and the ascomycetes Coccidioides posadasii and Histoplasma capsulatum. These elements are unlike any previously described transposons. An archetypal member of the group, crypton Cn1, is 4 kb in length and is present at a low ...
متن کاملFinding Exact and Solo LTR-Retrotransposons in Biological Sequences Using SVM
Finding repetitive subsequences in genome is a challengeable problem in bioinformatics research area. A lot of approaches have been proposed to solve the problem, which could be divided to library base and de novo methods. The library base methods use predetermined repetitive genome’s subsequences, where library-less methods attempt to discover repetitive subsequences by analytical approach...
متن کاملTy1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants.
We have used the polymerase chain reaction to isolate fragments of Ty1-copia group retrotransposons from a wide variety of members of the higher plant kingdom. 56 out of 57 species tested generate an amplified fragment of the size expected for reverse transcriptase fragments of Ty1-copia group retrotransposons. Sequence analysis of subclones shows that the PCR fragments display varying degrees ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 18 11 شماره
صفحات -
تاریخ انتشار 2001